
Micromachined phase-shifted array-type Mirau 
interferometer for swept-source OCT imaging: 
design, microfabrication and experimental 
validation 

C. GORECKI,1,* J. LULLIN,1 S. PERRIN,1 S. BARGIEL,1 J. ALBERO,1 O. 
GAIFFE,1 J. RUTKOWSKI,1 J. M. COTE,1 J. KRAUTER,2 W. OSTEN,2 W.-S. 
WANG,3 M. WEIMER,3 AND J. FROEMEL

3 
1FEMTO-ST Institute (UMR CNRS 6174, UBFC), 15B avenue des Montboucons, 25030 Besançon, 
France 
2Institut für Technische Optik, Universiät Stuttgart, Pfaffenwaldring 9, 70569 Stuttgart, Germany 
3Fraunhofer Institute for Electronic Nanosystems, Technologie Campus 3, 09126 Chemnitz, Germany 
*christophe.gorecki@femto-st.fr 

Abstract: OCT instruments permit fast and non-invasive 3D optical biopsies of biological 
tissues. However, they are bulky and expensive, making them only affordable at the hospital 
and thus, not sufficiently used as an early diagnostic tool. Significant reduction of system cost 
and size is achieved by implementation of MOEMS technologies. We propose an active array 
of 4x4 Mirau microinterferometers where the reference micro-mirrors are carried by a vertical 
comb-drive microactuator, enabling the implementation of the phase-shifting technique that 
improves the sensitivity and eliminates unwanted interferometric terms. We focus on the 
design of the imaging system, the microfabrication and the assembly of the Mirau 
microinterferometer, and the swept-source OCT imaging. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

Nowadays, the micromachining technologies are well matching the needs of biomedical 
applications of modern optical metrology. Applications such as micro-spectrometers [1], on-
chip confocal microscopy [2] and micro-catheters [3] for in-vivo tissue scanning are some 
examples where potential sensing is increased by using MOEMS (micro-opto-electro-
mechanical systems) technologies. The ability to fabricate micromachined micro-mirrors, 
scanners and other microoptical elements on the order of several hundreds of micrometers in 
size has stimulated research into new instrumental applications. Low-inertia scanners that 
deflect light using a MEMS component of small mass have suited features such as high-
scanning speed and accuracy positioning at low cost, without the degradation of the 
measurement resolution. The cost effectiveness of all these devices permits portability, 
therefore, increasing the usability and serviceability of medical instruments. Also, an 
increasing demand allowing the reduction of size and cost as well as several new sensing 
challenges, such as imaging inside of the human body, have made the miniaturization of 
interferometric systems an important issue [4,5]. 

MOEMS and MEMS components can be stacked using a multi-wafer vertical integration 
method to build array-type microinterferometers and microscopes. The potential of such 
integration has been demonstrated recently for an electrostatically tuned grating 
microinterferometer [6] as well as for a miniature laser Twyman-Green interferometer [7] and 
5x5 array of low-coherence Mirau microinterferometers [8], used for a massively parallel in-
line inspection of MEMS. 

Among of the instruments that can benefit from the significant improvement in equipment 
efficiency and quality of patient diagnosis, resulting from incorporation of MOEMS 
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technologies, are the Optical Coherence Tomography (OCT) imagers [9]. OCT is a powerful 
biomedical imaging technology offering the cross-sectional imaging with 1-10 μm resolution 
and 1-3 mm imaging depth. It is a technique of low-coherence interferometry where the 
interferometer acquires the interference signal issued from each single scan point reflected by 
a transparent sample and records it as a depth profile (A-scan). Series of A-scans across the 
sample permits a cross-sectional reconstruction where a 3D volumetric image is obtained by 
combining multiple cross-sections. Various interferometry configurations are in use for OCT 
but the main configuration remains the Michelson interferometer [10]. In a Michelson 
interferometer objective, suitable for small magnifications, a beam splitter cube and a 
reference mirror are inserted between the objective and the sample [11]. Michelson 
interferometer requires a long working-distance objective because at magnifications higher 
then 50X, the working distance becomes too short to squeeze in a beam splitter cube. The 
Linnik interferometer is well adapted for high magnifications (100X-200X) with an objective 
of large numerical aperture (NA) but a short working distance. This is a complex 
configuration because a beam splitter cube directs the beam into two matched and similar 
objectives; the first beam is directed towards the reference mirror and the second one is 
directed towards the test surface. The Mirau interferometric objective is the favorite 
configuration for its medium and high magnifications (10X-100X) since only a single 
objective is needed. The advantage of such a configuration is to place a reference mirror in 
the center of the objective lens, and interposing a semi-transparent plate between the 
reference mirror and the specimen, producing a compact package. Because of its particular 
architecture, the Mirau interferometer is well suited to be vertically integrated at wafer-level 
by MOEMS-based technologies. The main drawback of Mirau configuration consists in the 
obscuration of central part of image by the reference mirror. At magnifications lower than 
10X with corresponding smaller NA values, the central obscuration of Mirau interferometer 
can be significant. In this case, using higher numerical apertures can only minimize the 
presence of the central obscuration. The axial and lateral resolutions of a Mirau interferometer 
are well suited for the exigencies of OCT imaging of the living tissues and its range of 
working distances is well adapted to the requirements of in-vivo measurements such as the 
diagnosis of skin pathologies. In dermatology, the majority of the OCT systems are bulk 
microscopes, performing the serial measurements and presenting a limited potential for 
miniaturization. A need for miniature and low-cost instruments is thus enhanced, enabling to 
read the data in parallel by a matrix of probe sensors. This is the core of the present 
contribution. In spectral domain OCT, the implementation of MOEMS technologies offers 
not only the size and cost reduction, but also the implementation of actuated micro-mirrors 
for the building of an optical phase-shifter allowing the reduction of the parasitic terms of 
interference signal and improving the quality of OCT images [12]. 

In this paper, we focus on the implementation of an active and array-type micromachined 
Mirau microinterferometer for swept-source OCT (SS-OCT) imaging. First, we present the 
architecture of the Mirau microinterferometer where the reference micro-mirror is integrated 
on top of a vertical comb-drive actuator, and we define its main functional parameters. 
Second, we focus on fabrication process of each micro-optical and MEMS building block as 
well as of the complete assembly. To verify the imaging quality of the resulting OCT 
microsystem, three transparent samples are measured and the interest of phase-shift 
performed via the MEMS actuator is demonstrated. 

2. Design and methods 

2.1 Design and specifications of the Mirau microinterferometer for SS-OCT imaging 

The matrix of active Mirau microinterferometers is designed to be a core component of our 
SS-OCT microsystem, as detailed in Ref. 13. The experimental set-up is shown in Fig. 1(a). 
The illumination block includes a commercial swept-source laser (ESS-840 Exalos) having a 
central wavelength of λc = 840 nm, a spectral bandwidth of Δλ = 78 nm and an A-scan 
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frequency of 110 kHz. The incident light beam is collected by an array of 4x4 Mirau 
microlenses and directed towards the sample to be measured. For each single-channel 
interferometer the collected light passes through a thin beam-splitter plate that reflects a part 
of it back to a moving reference micro-mirror integrated on top of the MEMS actuator, while 
the rest of light is transmitted towards the sample to be measured. The beams reflected by the 
sample and by the reference micro-mirror interfere, generating an interference pattern, and are 
directed by a 4x4 array of microlenses towards a high-speed camera after the transmission by 
a cube beam-splitter. The square-pixel size of the camera is 12 µm and the frame rate is set to 
4 kfps. The vertical actuation of Mirau reference micro-mirrors allows a phase shifting 
increment to be achieved. Being actuated at the resonance frequency by sinusoidal driving 
signal, the MEMS-based system enables a rapid measurement of the interferograms. 

The architecture of the active Mirau interferometer is shown schematically in Fig. 1(b). 
The device consists of a series of vertically stacked components: a doublet of plano-convex 
microlenses, an electrostatically driven vertical comb-drive actuator carrying the array of 
Mirau reference micro-mirrors, a spacer and a planar beam splitter plate. In the following 
discussion, W1 represents the microlens doublet matrix, W2 represents the Z microscanner, 
and W3 is the spacer while W4 represents the beam-splitter wafer. To build the Mirau 
interferometer, the doublet of microlenses has been selected instead of single microlenses 
[14]. Because of lower optical aberrations, the optical performance achieved by the lens 
doublet is better than for an individual lens having an equivalent numerical aperture. The 
assembly of two glass microlens arrays is made by anodic bonding at the wafer-level thanks 
to their silicon frame resulting from each array fabrication. Such microlens doublets are then 
well aligned and robust. The diameter of an individual microlens is 1.9 mm and the array 
pitch is 2 mm. The focal length of a microlens doublet is 7.5 mm, giving a numerical aperture 
of 0.1. 

The transverse resolution of OCT imaging is defined by the effective numerical aperture 
of the focusing lens and is limited to 6.3 μm. Moreover, the axial resolution of OCT imaging 
is 6.2 µm that is determined by the optical performance of the light source, i.e. the central 
wavelength and the swept range of the laser source. The OCT configuration allows a depth of 
penetration of 0.6 mm with a sensitivity in the range of 70-85 dB. 

The key element of Mirau interferometer is the vertical microscanner W2. The design and 
the fabrication of this silicon-on-insulator (SOI)-based scanner are described in Ref. 15. The 
microscanner is designed to generate a vertical displacement of a large platform with an array 
of 4x4 reference micro-mirrors of the Mirau interferometer, as shown in Fig. 1(c). Here, the 
micro-mirror platform is represented with micro-mirrors 1-4 whose mechanical 
characterization is provided latter. The vertical motion of the whole array of the 4x4 reference 
micro-mirrors at the resonance frequency of actuator is used to implement the sinusoidal 
phase-shifted imaging where the displacement can be controlled precisely by in situ position 
capacitive sensor. In our case, the microscanner is designed to work in transmission, i.e. the 
areas around the micro-mirror are transparent. The platform is thus formed by 16 apertures 
made in a 40-μm thick device layer of the SOI wafer and is structured with small holes in 
order to decrease its weight. A honeycomb structure is chosen for its good trade-off between 
mass and stiffness, preventing the possible vertical deformation of the platform (see the image 
of Fig. 1c). The size and the shape of the micro-mirrors are defined by the optical design of 
the Mirau microinterferometer as a 400x400 μm2 square surface. Important design issue 
concerns the minimization of the obscuration created by the reference micro-mirror in the 
center of the light beam. 
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Fig. 6. View of a PCB-mounted chip of Mirau interferometers, shown from the microlens side. 

3. Results and discussion 

To validate performances of the MOEMS-based Mirau interferometer in OCT imaging both 
optical and mechanical characterizations have been performed. 

First, the lateral resolution has been evaluated experimentally by imaging a 1951 USAF 
resolution target. The linewidth of smallest line pair on the USAF target, which is well 
resolved, is 6.2 µm. 

Figure 7(a) shows two cross sections of the intensity Point Spread Function (IPSF) of one 
selected Mirau interferometer after assembly [19]. The image at the left of Fig. 7(a) represents 
the axial irradiance distribution (XZ slice) measured along the optical axis. The image on the 
right of Fig. 7(a) corresponds to the YX slice measured at the focal point. The FWHM value 
of the IPSF at the center of the focal plane is 5 µm, which confirm the previous optical 
characterization of the lateral resolution. Moreover, the focal length of the doublet equals 7.65 
mm and the depth of field is around 400 µm. 

The actuation performance of the Z microscanner has been tested using the Doppler 
vibrometry module MSA500 from Polytec. We measured the actuator static displacement as a 
function of applied voltage between 0 and 40 V. For 40 V the measured amplitude of the 
static displacement is around 1.75 µm. The first resonance frequency of the Z microscanner is 
485 Hz, corresponding to a piston mode motion of the scanner. This mode is precisely used 
for the actuation of the vertical microscanner to perform the phase modulation. The quality 
factor of the vertical microscanner is around 64, giving thus an excellent basis for robust and 
stable actuation. Figure 7(b) shows the micro-mirror displacement under a sinusoidal 
excitation, demonstrating the targeted peak-to-peak amplitude of 352 nm. This function is 
obtained by applying a voltage VS = 2.5 + 1.5sin(ω0t) V for all the actuators, where ω0 is the 
first resonance pulsation. As the electrostatic force is proportional to the square of the voltage, 
the applied voltage is a sum of a DC force, a force proportional to sin(ω0t) and a force 
proportional to sin(2ω0t + π/2). 

For the implementation of phase shifting algorithm, it is important to know the 
displacement amplitude of all the reference micro-mirrors in the same array. The dynamic 
displacement of the platform at resonant frequency was investigated at different points of the 
platform, i.e. at the position of the four micro-mirrors of Fig. 1(c), forming a quarter of the 
platform. The vertical displacement of the reference micro-mirrors was measured under 
dynamic driving voltage at the center position of the four micro-mirrors (Mirror 1-Mirror 4). 
Here, the measured displacement is much larger than the targeted one (352 nm), 
demonstrating the potential of this microscanner for medical imaging applications, for which 
small voltages are particularly important since the device is in contact with the patient body. 
The displacement of the micro-mirror in the middle of the platform (Mirror 2) is 70 nm higher 
than the one next to the spring (Mirror 3) because of the vertical mechanical deformation of 
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Fig. 9. SS-OCT images: a) 2D cross-sectional image from the multi-layer scotch tape; (b) 2D 
cross-sectional image from 4-mm long sample made of scratched paint covered with varnish; 
and (c) 3D image of onion slices. 

The first experimental demonstration of SS-OCT imaging has been made using a scotch 
tape stick onto a silicon wafer. Figure 9(a) shows the acquired cross-section image where the 
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three different layers appear. This image is completed by two A-scan plots, which are 
extracted from the center and from the edge of the image. As the OCT image was obtained 
without the phase-shift, artifact peaks appear around the three main ones, indicated by orange 
dots. The B-scan reconstruction was retrieved along 300 µm lateral field of view. A small 
decrease of the sensitivity can be seen at the edge of the cross-sectional image. The decrease 
of the signal-to-noise ratio at the border is estimated to be −5 dB, compared to the main peak, 
corresponding to the signal from the wafer layer. Despite this signal loss, the two diopters 
generated by the scotch-tape and the surface of the wafer can be retrieved. The measured 
height of the scotch-tape is 22 µm. The sensitivity of this OCT image is in the range of 60 dB. 

Second, we selected a diffusive sample optically similar to the sample of pig skin, which 
is representative of what is desired in dermatology. For a dermatologist a good OCT imager is 
capable of revealing the fine details of skin tissue microstructures with a lateral resolution of 
less than 10 µm and an imaging depth of less than 1 mm. Figure 9(b) represents a cross-
sectional OCT image of a layer of scratched paint covered with varnish. Here, the sample was 
mounted on a mechanical stage, insuring a linear displacement on 4 mm with a precision of 1 
µm. Scratches under the varnish are clearly visible. The thickness of the varnish’s layer is 
about 300 nm. The estimated sensibility is around 80 dB. 

Finally, we measured OCT images of an onion slice to demonstrate the feasibility for 3D 
imaging of biological specimens. Figure 9(c) shows the microscopic structure of an onion 
slice where a 3D volumetric image of 300 × 300 × 600 μm3 is reconstructed. The 3D 
reconstruction reveals inner sample structure corresponding to the different separated layers. 
We estimate the sensitivity of this image to be in the range of 35-40 dB. 

4. Conclusions and perspectives 

MOEMS technology combining MEMS and micro-optics is well suited for manipulating light 
with different ways to scan, steer or modulate the beams, offering batch-fabricated 
microsystems at lower cost. A number of MOEMS technology demonstrators have been 
developed for imaging needs of the medical market. 

In this paper, we reviewed the design, the fabrication process and experimental results of 
an active micromachined array-type Mirau interferometer. The Mirau interferometer includes 
the electrostatic vertical microscanner carrying an array of reference micro-mirrors, being the 
key element of a SS-OCT imager. The technology of each functional part of this miniature 
multi-channel Mirau microinterferometer and the integration schema are described and 
discussed. In particular, the 3D assembly offers an integration platform for complex MOEMS 
and allows the effective integration of various heterogeneous technologies, disposed in 
vertically stacked building blocks (glass microlens, MEMS actuator, beam splitter) in a 
minimum space. The presented results demonstrate experimentally the proof-of-concept of 
our approach. 

Thanks to the optimized design of this vertical architecture, several original technologies 
are proposed, offering the integrity of MEMS microactuators assembled with microoptics. 
This approach offers a low level of residual stress and provides a miniaturized and low-cost 
solution to create highly accurate microsystem for OCT imaging, composed by several hybrid 
components. The proposed OCT microsystem, presenting the lateral resolution of 6.3 µm, is 
well suited for the early diagnosis of cutaneous pathologies. The OCT microsystem is rapid 
because of the array-type architecture, and has the attractive attributes of simplicity and low 
cost. 

When operating working in the regime of full-field OCT, realizing direct imaging with the 
help of the complete array of Mirau interferometers, the microsystem has a field of view of 
8x8 mm2. This field of view is larger than the field of view of commercially available OCT 
microscopes, widely used in dermatology. Thus, the field of view of Vivo Sights system from 
Michelson Diagnostic is 6x6 mm2 while that of Afga HealthCare Skinell is 1.8x1.5 mm2. In 
future works, the full benefit of full field OCT imaging will be obtained by the improvement 
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of the illumination block with the implementation the Köhler illumination. Other step of 
development will include the improvements of optical quality of Mirau components, 
including in particular the design and fabrication of an improved version of focusing 
microlenses with AR coatings. 
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